Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Wariacje z powtórzeniami – definicja, wzór, zadania

Ostatnio komentowane
Trafnie ujęte, Wietnam był klęską USA na każdej płaszczyźnie, również od strony m...
incognito • 2016-07-18 16:00:39
Rozumowanie indukcyjne, to takie które przebiega od szczegółu do ogółu.
Konsti • 2016-06-28 10:17:38
"gliniane, szczelnie zamknięte naczynie", "tajemniczego naczynia", "co znajduje się w pu...
homo sapines • 2016-06-23 05:46:46
Dzięki
Pabelski94 • 2016-06-14 13:28:38
W zdaniu; "Proces sterowania natężeniem prądu w kolektorze przy pomocy niewielkiego pr...
Komp20000 • 2016-06-14 12:30:45

Matematyka

Autor:
Drukuj
Drukuj
Rozmiar
AAA

Wariacje z powtórzeniami – definicja, wzór, zadania

Def.: k-elementową wariacją z powtórzeniami zbioru n-elementowego nazywamy każdy k-wyrazowy ciąg utworzony z elementów tego zbioru.

 

Twierdzenie: Ilość k-elementowych wariacji z powtórzeniami zbioru n-elementowego wynosi n\cdot n\cdot ... \cdot n (k razy), tzn.

\overline{V_n^k} = n^k

 

Zauważmy, że powyższe fakty zbieżne są z tym co wynika z reguły mnożenia - jeśli mamy wybrać k elementów ze zbioru n-elementowego, przy czym elementy te mogą się powtarzać, to każdy z nich możemy wybrać na n sposobów, zatem mamy n^k możliwości.

 

Przykład:

Ciąg (1,2,1,2,1,2) jest sześcioelementową wariacją zbioru \left \{ 1,2 \right \}.

Liczba wszystkich sześcioelementowych wariacji tego zbioru jest równa 2^6 = 64.

 

Liczenie wariacji z powtórzeniami sprowadza się do podnoszenia do potęgi naturalnej.

 

Zadania:

Ile jest wszystkich siedmiocyfrowych numerów telefonicznych, w których nie występuje cyfra 0?

 

Odpowiedź:

9^7 = 4782969.

Polecamy również:

5 + 1 =