Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Twierdzenie Eulera o wielościanach

Ostatnio komentowane
Witam Dla mnie jednym z największych paradoksów współczesnego świata jest fakt,że p...
pawlo0 • 2017-08-16 17:57:59
WIEM,ŻE MISJE POKOJOWE ŚĄ BARDZO NIEBEZPIECZNE.Podziwiam ludzi,którzy są na misji,ż...
tereska1 • 2017-08-15 08:19:23
Dobre zestawienie. Polecam także ten artykuł http://edueduonline.pl/blog/e-mail-angielsk...
Sara • 2017-08-09 10:30:02
Umiem w matme wiem ile to jest pienc pluz czy
Kujon • 2017-08-08 17:08:22
ale ktoś trafił jak kulą w płot z Jarosławem Mądrym
b • 2017-08-11 12:35:03
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Twierdzenie Eulera o wielościanach

Prawdziwe jest następujące twierdzenie o wielościanach (zwykłych, wypukłych):

Jeśli S oznacza liczbę ścian, W liczbę wierzchołków, a K liczbę krawędzi, to zachodzi W + S = K +2.

Tożsamość tą nazywamy wzorem Eulera dla wielościanów.

 

Dowód wymaga odrobinę gimnaztyki umysłu - wyobraźmy sobie wielościan, którego jedną ze ścian odrzucamy, by następnie rozciągnąć go i rozłożyć na płaszczyźnie. Teraz traktować go możemy jako grupę wielokątów o wspólnych bokach.

Skorzystamy z indukcji. 

Jeśli taki wielokąt ograniczymy do jednej ściany, będziemy mieć S=1, zaś W = K, możemy więc zapisać W + S = K+1.

Dołączenie kolejnej ściany zwiększy liczbę ścian o 1, a liczbę wierzchołków o jeden mniej niż liczbę krawędzi, zatem obie strony równości wzrosną o tyle samo. Kontynuując to rozumowanie dochodzimy do wniosku, że równość będzie zawsze prawdziwa.

Na koniec dołączmy odrzuconą początkowo ścianą, tworząc znów wielościan - jej dołączenie spowoduje domknięcie wielokąta, a wzór będzie miał postać W + S = K +2, co było do udowodnienia.

Polecamy również:

Komentarze (0)
2 + 4 =