Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Translacja o wektor – definicja, wzór, zadania

Ostatnio komentowane
[url=http://lisinopril20mg.us.org/]order lisinopril online[/url] [url=http://colchicine247...
Charlestuh • 2017-09-25 12:36:54
[url=http://fluoxetine20mg.us.org/]fluoxetine 20 mg[/url] [url=http://hydrochlorothiazide1...
Brettdoops • 2017-09-25 09:57:27
[url=http://cipro247.us.com/]cipro without a prescription[/url] [url=http://lisinopril20mg...
Charlestuh • 2017-09-25 10:20:11
[url=http://medrolpack.us.org/]medrol 4mg[/url] [url=http://cialispills.us.org/]cialis ove...
Brettdoops • 2017-09-25 08:36:02
[url=http://colchicine247.us.com/]buy colchicine[/url] [url=http://cephalexin250mg.us.org/...
Aaronutirm • 2017-09-25 08:26:15
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Translacja o wektor – definicja, wzór, zadania

Translacja to inaczej przesunięcie.

Punkt P = (x,y) przesunięty o wektor v = (x_v,y_v) ma współrzędne P' = (x+x_v,y+y_v).

O wektor można przesuwać całe figury - sprowadza się to do przesunięcia każdego punktu figury o ten wektor.

 

Przykład:

Przesunąć odcinek AB o wektor v = (1,2) gdy A = (0,3)B = (1,3).

Przesuwamy każdy z końców odcinka.

A' = (0+1,3+2)= (1,5)

B' = (1+1,3+2) = (2,5)

Zatem odcinek AB przesunięty wektor v ma końce w punktach (1,5)(2,5).

 

Zadanie:

Przesunąć odcinek AB o wektor v = (-2,5) gdy A = (1,0)B = (4,6).

 

Odpowiedzi:

Współrzędne nowych końców odcinka to (-1,5)(2,11).

Polecamy również:

Komentarze (0)
5 + 5 =