Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Środkowa trójkąta

Ostatnio komentowane
gowmo
gowno • 2017-11-24 18:00:18
hanzo pls switch
hanzo • 2017-11-23 18:06:26
"Konstytucja zbudowana jest z XIII artykułów" (rozdziałów) "Łączna liczba artykuł...
Patrycja • 2017-11-19 19:51:57
ŚWIETNE TO! ;D
Ja • 2017-11-19 12:36:05
Zamieszczone na tej stronie linki nie powinny znajdować się na stronie adresowanej do dz...
zaangażowana • 2017-11-19 10:50:47
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Środkowa trójkąta

Środkowa trójkąta to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku.

 

Każdy trójkąt ma trzy środkowe. Związane jest z nimi następujące twierdzenie:

 

Twierdzenie: Środkowe trójkąta przecinają się w punkcie dzielącym każdą z nich w stosunku 2:1 licząc od wierzchołka.

 

W trójkącie o bokach abc długość środkowej d dana jest wzorem:

d =   \frac{\sqrt{2a^{2}+2b^{2}-c^{2}} }{2}.

 

Zadanie:

Policzyć długość środkowej trójkąta równoramiennego o bokach 5, 5 i 6, padającej na podstawę.

 

Rozwiązanie:

Środkowa łączy wierzchołek z podstawą, a zatem z bokiem o długości 6. Korzystając ze wzoru obliczamy:

 \frac{ \sqrt{2 \cdot 5^{2} +2 \cdot 5^{2}-6^{2} } }{2}  = 
 \frac{ \sqrt{2  \cdot 25 +2  \cdot 25 -36 } }{2} =
 \frac{ \sqrt{100 -36 } }{2} =
 \frac{ \sqrt{64 } }{2} =  \frac{ 8 }{2} = 4.

Środkowa ma długość 4. 

Polecamy również:

Komentarze (0)
5 + 4 =