Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Środek odcinka – wzór, zadania

Ostatnio komentowane
W modelu stardardowym mezo obojetny ( pi ) zbudowany jest z kwarku ( u ) i antykwarku ( u...
Lech Lechman • 2017-07-22 19:28:02
Dlaczego nie ma daty wstawienia komentarza? Manipulacja?
Ciekawski • 2017-07-22 07:43:14
niech twardo sprawuja swoj urzad
kasia • 2017-07-20 17:16:17
Najwyższy czas skonczyc z bezprawie a sędziów którzy są polityczni wyrzucić z zawodu...
Maria • 2017-07-14 10:13:27
Czyli pisze coma jako pierwsza ?! EKSTRA !!!!!!!!!!!! Nie czytałam tego ale oglądałam...
Eliska_Karisska • 2017-07-03 19:07:42
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Środek odcinka – wzór, zadania

Przypomnijmy, że równanie odcinka rozpisane na współrzędne ma postać:

 \begin{cases}
x_{AB} = (1-t)x_A + tx_B
\\ 
y_{AB} = (1-t)y_A + ty_B, t \in [0;1]
 \end{cases}

Podstawiając za t odpowiednio 10 otrzymamy końce tego odcinka, natomiast jeśli przyjmiemy za t wartość  \frac12 otrzymamy jego środek. \begin{cases}
x_{AB} = \frac 1 2x_A + \frac 1 2x_B = \frac {x_A +x_B} 2
\\ 
y_{AB} = \frac 1 2y_A + \frac 1 2y_B =  \frac {y_A +y_B} 2
 \end{cases}

 

Jeśli zatem oznaczymy środek odcinka AB przez S_{AB} to będzie mieć on współrzędne S_{AB} = 

(\frac {x_A +x_B} 2,
\frac {y_A +y_B} 2)
.

 

Przykład:

Znaleźć środek odcinka CD o równaniu CD = (1+2t,2-2t).

Podstawmy t = \frac12 i otrzymamy, że S_{CD} = (2,1).

 

Zadanie:

Znaleźć środek odcinka o końcach w punktach (3,5)(8,-2).

  

Odpowiedzi:

S = (\frac {11}2, \frac 3 2 ).

Polecamy również:

Komentarze (0)
2 + 2 =