Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Środek odcinka – wzór, zadania

Ostatnio komentowane
XD
TwojaStara123 • 2018-05-20 13:18:22
jak coś to 1+5=6
twoja stara • 2018-05-20 13:42:58
hehe
hehe • 2018-05-20 11:09:39
PKO Bank Polski http://e-m2m.pl/5b010419ce74d
jadwiga • 2018-05-20 05:39:18
ale co to jest ta reformacja!! xd
jh jh • 2018-05-19 17:16:29
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Przypomnijmy, że równanie odcinka rozpisane na współrzędne ma postać:

 \begin{cases}
x_{AB} = (1-t)x_A + tx_B
\\ 
y_{AB} = (1-t)y_A + ty_B, t \in [0;1]
 \end{cases}

Podstawiając za t odpowiednio 10 otrzymamy końce tego odcinka, natomiast jeśli przyjmiemy za t wartość  \frac12 otrzymamy jego środek. \begin{cases}
x_{AB} = \frac 1 2x_A + \frac 1 2x_B = \frac {x_A +x_B} 2
\\ 
y_{AB} = \frac 1 2y_A + \frac 1 2y_B =  \frac {y_A +y_B} 2
 \end{cases}

 

Jeśli zatem oznaczymy środek odcinka AB przez S_{AB} to będzie mieć on współrzędne S_{AB} = 

(\frac {x_A +x_B} 2,
\frac {y_A +y_B} 2)
.

 

Przykład:

Znaleźć środek odcinka CD o równaniu CD = (1+2t,2-2t).

Podstawmy t = \frac12 i otrzymamy, że S_{CD} = (2,1).

 

Zadanie:

Znaleźć środek odcinka o końcach w punktach (3,5)(8,-2).

  

Odpowiedzi:

S = (\frac {11}2, \frac 3 2 ).

Polecamy również:

Komentarze (0)
4 + 1 =