Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Średnia ważona – wzór, definicja, zadania

Ostatnio komentowane
dzięki za odp...
julia • 2017-02-28 16:48:10
(;_;)
juzio stalin • 2017-02-28 16:08:33
Fojoskie
gupi_cfel • 2017-02-27 21:04:25
Fajnie wytłumaczone :)
TROPCIO • 2017-02-27 20:05:32
Spór klasyków z romantykami zapoczątkował Kazimierz Brodziński, a nie Jan Śniadecki....
Natalia • 2017-02-27 19:24:10
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Średnia ważona – wzór, definicja, zadania

Średnia ważona jest modyfikacją średniej arytmetycznej do wariantu, w którym występują wagi, tzn. każda z obserwacji cechować się może różną ważnością.

Średnia ważona liczb x_1,...,x_n o wagach w_1,...,w_n wynosi \overline x = \frac {w_1\cdot x_1+... + w_n \cdot x_n}{w_1 + ... +w_n}.

Liczymy średnią ważoną według następującego algorytmu: każdą liczbę skalujemy przez jej wagę, następnie sumujemy wszystkie te przeskalowane liczby oraz dzielimy tak, jak w przypadku średniej arytmetycznej przez ilość wszystkich liczb, z tym, że ilość liczb każdej wagi również mnożymy przez tą wagę.

 

Przykład:

Niech dany będzie następujący zestaw liczb z przypisanymi im wagami:

Po przeskalowaniu liczb przez wagi oraz posumowaniu ich otrzymujemy 73 - to będzie licznik ułamka.

W celu policzenia mianownika zastanawiamy się ile jest liczb danej wagi, i tak mamy dwie liczby wagi 1, pięć liczb wagi 2 i trzy liczby wagi 3. Po pomnożeniu i zsumowaniu otrzymujemy 21 i taki też jest licznik ułamka.

Ostatecznie zatem średnia ważona zadanego zestawu liczb wynosi

\overline x = \frac{73}{21} \approx 3,48

 

Zadanie:

Policzyć średnią ważoną dla następującego zestawu danych:

 

Odpowiedzi:

23,16 (z dokładnością do dwóch miejsc po przecinku)

Polecamy również:

Komentarze (0)
2 + 2 =