Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Średnia ważona – wzór, definicja, zadania

Ostatnio komentowane
www.wp.pl
as • 2018-01-15 17:25:25
Ty fajny
Fajnioszek • 2018-01-14 21:10:46
Śmierć Husa ukazuje prawdę o papiestwie, zresztą po dziś dzień te funkcje się nie z...
Małgorzata Konstańczak. • 2018-01-14 12:54:49
bardzo fajne i pomogło mi wypełnić zeszytb lektur
killer • 2018-01-14 12:44:13
@Krzysiek, dziękujemy za zwrócenie uwagi. Już poprawione.
ADMIN • 2018-01-15 09:04:30
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Średnia ważona – wzór, definicja, zadania

Średnia ważona jest modyfikacją średniej arytmetycznej do wariantu, w którym występują wagi, tzn. każda z obserwacji cechować się może różną ważnością.

Średnia ważona liczb x_1,...,x_n o wagach w_1,...,w_n wynosi \overline x = \frac {w_1\cdot x_1+... + w_n \cdot x_n}{w_1 + ... +w_n}.

Liczymy średnią ważoną według następującego algorytmu: każdą liczbę skalujemy przez jej wagę, następnie sumujemy wszystkie te przeskalowane liczby oraz dzielimy tak, jak w przypadku średniej arytmetycznej przez ilość wszystkich liczb, z tym, że ilość liczb każdej wagi również mnożymy przez tą wagę.

 

Przykład:

Niech dany będzie następujący zestaw liczb z przypisanymi im wagami:

Po przeskalowaniu liczb przez wagi oraz posumowaniu ich otrzymujemy 73 - to będzie licznik ułamka.

W celu policzenia mianownika zastanawiamy się ile jest liczb danej wagi, i tak mamy dwie liczby wagi 1, pięć liczb wagi 2 i trzy liczby wagi 3. Po pomnożeniu i zsumowaniu otrzymujemy 21 i taki też jest licznik ułamka.

Ostatecznie zatem średnia ważona zadanego zestawu liczb wynosi

\overline x = \frac{73}{21} \approx 3,48

 

Zadanie:

Policzyć średnią ważoną dla następującego zestawu danych:

 

Odpowiedzi:

23,16 (z dokładnością do dwóch miejsc po przecinku)

Polecamy również:

Komentarze (0)
1 + 5 =