Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Przystawanie

Ostatnio komentowane
No ch*j tu jest tej charakterystyki elo
wosPRO • 2017-08-20 00:32:13
Witam Dla mnie jednym z największych paradoksów współczesnego świata jest fakt,że p...
pawlo0 • 2017-08-16 17:57:59
WIEM,ŻE MISJE POKOJOWE ŚĄ BARDZO NIEBEZPIECZNE.Podziwiam ludzi,którzy są na misji,ż...
tereska1 • 2017-08-15 08:19:23
Dobre zestawienie. Polecam także ten artykuł http://edueduonline.pl/blog/e-mail-angielsk...
Sara • 2017-08-09 10:30:02
Umiem w matme wiem ile to jest pienc pluz czy
Kujon • 2017-08-08 17:08:22
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Przystawanie

Przystawanie trójkątów jest matematycznym uściśleniem tego, że dwa trójkąty są „takie same”.

 

 

To, czy dwa trójkąty są przystające, weryfikujemy na podstawie cech przystawania trójkątów.

 

Cechy przystawania

(1) bok-bok-bok

Powiemy, że dwa trójkąty są przystające, jeśli wszystkie odpowiadające sobie boki będą miały taką samą długość.

|AB| = |DE|, |AC| = |DF|, |BC| = |EF|

(2) bok-kąt-bok

Powiemy, że dwa trójkąty są przystające, jeśli mają dwa odpowiadające sobie boki są równe, a kąt między nimi jest tym samym kątem w obu trójkątach.

Np. |AB| = |DE||AC| = |DF| oraz |\angle BAC| = |\angle EDF|

(3) kąt-bok-kąt

Powiemy, że dwa trójkąty są przystające, jeśli jeden bok odpowiadający sobie w obu trójkątach ma równą długość, oraz kąty przy tym boku są takie same.

Np. |AB| = |DE|, |\angle ABC| = |\angle DEF|, |\angle BAC| = |\angle EDF|

Polecamy również:

Komentarze (0)
1 + 3 =