Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Prawdopodobieństwo klasyczne – definicja, wzory, przykłady, zadania

Ostatnio komentowane
[url=http://colchicine247.us.com/]Purchase Colchicine[/url]
Brettdoops • 2017-09-21 07:38:37
[url=http://erythromycin500mg.us.org/]erythromycin 500 mg[/url] [url=http://cephalexin250m...
StewartSooli • 2017-09-21 04:54:07
[url=http://cephalexin250mg.us.org/]cephalexin 250 mg[/url]
Aaronutirm • 2017-09-21 03:14:14
[url=http://trazodone247.us.com/]trazodone price[/url]
Aaronutirm • 2017-09-21 01:49:54
nic nie pomocne
rak • 2017-09-20 18:32:00
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Prawdopodobieństwo klasyczne – definicja, wzory, przykłady, zadania

Doświadczenie losowe to takie, którego wyniku nie możemy przewidzieć. Każdy możliwy wynik takiego doświadczenia nazywamy zdarzeniem elementarnym. Zbiór wszystkich zdarzeń elementarnych danego doświadczenia nazywamy przestrzenią zdarzeń i oznaczamy \Omega.

Przy tym, należy pamiętać, że wystąpienie każdego wyniku doświadceznia musi wykluczać każdy z pozostałych wyników, a zatem mówimy, że zdarzenia elementarne są parami rozłączne.

Każdy podzbiór skończonego zbioru zdarzeń elementarnych nazywamy zdarzeniem losowym.

 

Przykład:

Dla rzutu sześciościenną kostką do gry każdy z możliwych wyników 123456 jest zdarzeniem elementarnym.

\Omega = \left \{ 1,2,3,4,5,6 \right \}

Przykładem zdarzenia losowego będzie natomiast otrzymanie wyniku będącego liczbą pierwszą (są trzy takie zdarzenia: 235).

Gdybyśmy rzucali dwiema kostkami wówczas zdarzeniami elementarnymi byłyby dwójki \left \{ x,y \right \}, gdzie xy są liczbami ze zbioru \left \{ 1,2,3,4,5,6 \right \}. Wszystkich zdarzeń elementarnych jest 6 \cdot 6 = 36. Wówczas zdarzeniem losowym polegającym na wylosowaniu na obu kostkach liczby pierwszej byłyby wyniki \left \{ 2,2 \right \}\left \{2,3  \right \}\left \{ 2,5 \right \}\left \{ 3,3 \right \}\left \{  3,5\right \}\left \{  5,5\right \}. Zatem takich zdarzeń losowych jest 6.

 

Klasyczna definicja prawdopodobieństwa jest następująca:

Def.: Jeśli \Omega jest skończonym i niepustym zbiorem zdarzeń elementarnych

Polecamy również:

Komentarze (0)
5 + 3 =