Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Prawdopodobieństwo iloczynu zdarzeń – definicja, wzory, przykłady, zadania

Ostatnio komentowane
troche za krótkie
juk • 2017-05-27 09:15:23
bssjvsgvkjsbusvb;Sdulabv>AJNiduav>KJBILsd;bv.dfbzlkfblS>KMSLvsldkvmkn kdvlksn.kvzkdn hcudj...
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo • 2017-05-26 11:10:09
A o bombie H , to jakoś nikt nie wie
Artyk • 2017-05-25 19:18:45
Fajny artykuł. Jestem brąz 5 w LoL. Pozdrawiam Bronzowe Myśli.(Ta strona jest poświęc...
Bronz pinć • 2017-05-25 16:53:26
fajne
sasza • 2017-05-25 06:05:41
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Prawdopodobieństwo iloczynu zdarzeń – definicja, wzory, przykłady, zadania

Przekształcając wzór na prawdopodobieństwo warunkowe otrzymujemy wzór na prawdopodobieństwo iloczynu zdarzeń, tj. dla A,B \subset \Omega mamy P(A \cap B) = P(B) \cdot P(A|B).

 

 

Przykład:

Łucznik trafia w tarczę z prawdopodobieństwem 0,6, przy czym istnieje 70% szansy na to, że jeśli trafi w tarczę to trafi w dziesiątkę. Jakie jest zatem prawdopodobieństwo trafienia w dziesiątkę?

Przedstawmy sytuację na diagramie:

 Jeśli przez B oznaczymy sytuację polegającą na tym, że łucznik trafi w tarczę, natomiast przez A, że trafi w dziesiątkę, to wówczas, korzystając z wzoru na prawdopodobieństwo iloczynu zdarzeń będziemy mieć P(A \cap B) = P(B) \cdot P(A|B) = 0,6 \cdot 0,7 = 0,42.

Zatem prawdopodobieństwo trafienia w dziesiątkę wynosi 0,42.

 

Zadanie:

Z talii liczącej 24 karty losujemy bez zwracania trzy karty. Oblicz prawdopodobieństwo tego, że wylosujemy kolejno króla, asa i damę.

 

Odpowiedzi:

\frac 4 {24}\cdot \frac 4 {23}\cdot \frac 4 {22}= \frac {4}{759}.

Polecamy również:

Komentarze (0)
5 + 2 =