Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Pole trójkąta – geometria analityczna

Ostatnio komentowane
gowmo
gowno • 2017-11-24 18:00:18
hanzo pls switch
hanzo • 2017-11-23 18:06:26
"Konstytucja zbudowana jest z XIII artykułów" (rozdziałów) "Łączna liczba artykuł...
Patrycja • 2017-11-19 19:51:57
ŚWIETNE TO! ;D
Ja • 2017-11-19 12:36:05
Zamieszczone na tej stronie linki nie powinny znajdować się na stronie adresowanej do dz...
zaangażowana • 2017-11-19 10:50:47
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Pole trójkąta – geometria analityczna

W geometrii analitycznej pole trójkąta o wierzchołkach w punktach A(x_A,y_A), B(x_B,y_B) i C(x_C,y_C) dane jest wzorem

P_{ \Delta ABC}= \frac12|(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A)|.

 

Przykład:

Jakie pole będzie mieć trójkąt o wierzchołkach A(1,2)B(-1,-2)C(1,5)?

Podstawmy do wzoru: P_{ \Delta }= \frac12|(-1--1)(5-2)-(-2-2)(1-1)| = \frac12|-2\cdot3| = 3.

 

Zadanie:

Policzyć pole trójkąta o wierzchołkach A(-1,3)B(-3,-3)C(2,1).

 

Odpowiedzi:

Pole tego trójkąta wynosi 11.

Polecamy również:

Komentarze (0)
4 + 3 =