Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Pole trójkąta – geometria analityczna

Ostatnio komentowane
[url=http://buytrazodone.shop/]trazodone[/url] [url=http://avodart.store/]avodart[/url] [u...
Billynat • 2017-09-20 00:46:42
takie se
ggg • 2017-09-19 19:05:57
[url=http://buyanafranil.shop/]anafranil ocd[/url] [url=http://retina.fund/]tretinoin 0.1 ...
Charlestuh • 2017-09-19 16:36:49
Ubogie w wiedze o etapach replikacji
JD • 2017-09-19 15:45:46
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Pole trójkąta – geometria analityczna

W geometrii analitycznej pole trójkąta o wierzchołkach w punktach A(x_A,y_A), B(x_B,y_B) i C(x_C,y_C) dane jest wzorem

P_{ \Delta ABC}= \frac12|(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A)|.

 

Przykład:

Jakie pole będzie mieć trójkąt o wierzchołkach A(1,2)B(-1,-2)C(1,5)?

Podstawmy do wzoru: P_{ \Delta }= \frac12|(-1--1)(5-2)-(-2-2)(1-1)| = \frac12|-2\cdot3| = 3.

 

Zadanie:

Policzyć pole trójkąta o wierzchołkach A(-1,3)B(-3,-3)C(2,1).

 

Odpowiedzi:

Pole tego trójkąta wynosi 11.

Polecamy również:

Komentarze (0)
2 + 5 =