Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Odchylenie standardowe – wzory, przykłady, zadania, definicja

Ostatnio komentowane
ten tekst jest bardzo osobisty
stalker • 2018-01-16 19:50:27
www.wp.pl
as • 2018-01-15 17:25:25
Ty fajny
Fajnioszek • 2018-01-14 21:10:46
Śmierć Husa ukazuje prawdę o papiestwie, zresztą po dziś dzień te funkcje się nie z...
Małgorzata Konstańczak. • 2018-01-14 12:54:49
bardzo fajne i pomogło mi wypełnić zeszytb lektur
killer • 2018-01-14 12:44:13
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Odchylenie standardowe – wzory, przykłady, zadania, definicja

Odchylenie standardowe jest miarą nierównomierności rozkładu danych wokół średniej.

Wariancją liczb x_1,...,x_n nazywamy liczbę  \sigma ^2 = \frac{(x_1-\overline x)^2 + ... + (x_n -\overline x)^2}n, gdzie \overline x jest średnią arytmetyczną liczb x_1,...,x_n.

Odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji, tj.  \sigma =\sqrt{ \sigma ^2} =\sqrt{ \frac{(x_1-\overline x)^2 + ... + (x_n -\overline x)^2}n}.

 

Przykład:

Dla liczb 49111313 średnia wynosi \overline x = 10, natomiast odchylenie standardowe jest równe

 \sigma = \sqrt{\frac{(4-10)^2+(9-10)^2+(11-10)^2+(13-10)^2+(13-10)^2}5} = 
\sqrt{\frac{56}5} \approx 3,35

 

Zadania:

Obliczyć odchylenie standardowe liczb 226677789.

 

Odpowiedź:

\sigma \approx 2,31

Polecamy również:

Komentarze (0)
5 + 4 =