Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Korelacja Spearmana – wzór, przykład, zadania

Ostatnio komentowane
przydatne
Driskon • 2017-02-26 19:53:44
po co wy dzielicie artykuły na miliard stron? co to, jeden kB internetu kosztuje tyle co ...
Janusz • 2017-02-26 17:11:04
Dzięki
Bot • 2017-02-26 16:25:54
GEOMETRIA:-)
K • 2017-02-23 20:39:53
Wszystko dobrze opisane
Penisiarz123 • 2017-02-23 18:21:32
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Korelacja Spearmana – wzór, przykład, zadania

Współczynnik korelacji rang Spearmana jest przydatny w sytuacjach, w których mamy do czynienia na przykład z dwoma rankingami i chcemy porównać ich zgodność.

Jest on dany wzorem

r_s = 1 - \frac{6(d_1^2 + ... + d_n^2)}{n(n^2-1)},

przy czym d_i to różnica w ocenie i-tego obiektu w jednym i drugim rankingu, natomiast n - ilość ocenianych obiektów.

Tak jak w przypadku współczynnika korelacji liniowej Pearsona współczynnik korelacji rang Spearmana jest miarą z przedziału [-1;1]. Podobna jest również jego interpretacja. 

 

Przykład:

Wyobraźmy sobie, że miejsca uczelni wyższych w dwóch rankingach przedstawiają się następująco:

Liczymy różnice między pozycjami w obu rankingach, oraz podstawiamy do wzoru.

Ostatecznie otrzymamy zatem, że r_s \approx 0,77, co świadczy o dość dużej zgodności obu rankingów.

Polecamy również:

Komentarze (0)
4 + 2 =