Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Korelacja Spearmana – wzór, przykład, zadania

Ostatnio komentowane
noob
bhjbj • 2018-05-23 15:53:03
gg
glhf • 2018-05-23 15:26:26
filip
filip • 2018-05-23 09:57:55
Jestem Michał Starba witam i pozdrawiam a 3+4=8
Michał Starba • 2018-05-22 17:56:31
fajne
LOL • 2018-05-22 17:48:47
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Współczynnik korelacji rang Spearmana jest przydatny w sytuacjach, w których mamy do czynienia na przykład z dwoma rankingami i chcemy porównać ich zgodność.

Jest on dany wzorem

r_s = 1 - \frac{6(d_1^2 + ... + d_n^2)}{n(n^2-1)},

przy czym d_i to różnica w ocenie i-tego obiektu w jednym i drugim rankingu, natomiast n - ilość ocenianych obiektów.

Tak jak w przypadku współczynnika korelacji liniowej Pearsona współczynnik korelacji rang Spearmana jest miarą z przedziału [-1;1]. Podobna jest również jego interpretacja. 

 

Przykład:

Wyobraźmy sobie, że miejsca uczelni wyższych w dwóch rankingach przedstawiają się następująco:

Liczymy różnice między pozycjami w obu rankingach, oraz podstawiamy do wzoru.

Ostatecznie otrzymamy zatem, że r_s \approx 0,77, co świadczy o dość dużej zgodności obu rankingów.

Polecamy również:

Komentarze (0)
1 + 5 =