Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Kombinacje – kombinatoryka, definicja, zadania

Ostatnio komentowane
www.wp.pl
as • 2018-01-15 17:25:25
Ty fajny
Fajnioszek • 2018-01-14 21:10:46
Śmierć Husa ukazuje prawdę o papiestwie, zresztą po dziś dzień te funkcje się nie z...
Małgorzata Konstańczak. • 2018-01-14 12:54:49
bardzo fajne i pomogło mi wypełnić zeszytb lektur
killer • 2018-01-14 12:44:13
@Krzysiek, dziękujemy za zwrócenie uwagi. Już poprawione.
ADMIN • 2018-01-15 09:04:30
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Kombinacje – kombinatoryka, definicja, zadania

Def.: Kombinacją k-elementową zbioru n-elementowego nazywamy każdy k-elementowy podzbiór tego zbioru.

 

Przypomnijmy, że ilość elementów zbioru (moc zbioru) dotyczy jedynie różnych elementów tego zbioru, to znaczy zbiór \left \{ 1,1,1 \right \} traktujemy tak samo jak zbiór \left \{ 1 \right \}.

 

Twierdzenie: Ilość kombinacji k-elementowych zbioru n-elementowego równa jest {n \choose k}, tzn.

C_n^k = \frac{n!}{k!(n-k)!}

 

Przykład:

Dla zbioru \left \{ 1,2,3,4 \right \} przykładowymi trzyelementowymi kombinacjami są \left \{ 1,2,3 \right \}\left \{ 2,3,4 \right \} lub \left \{ 1,3,4 \right \}.

Ilość takich kombinacji jest równa \frac {4!}{3!(4-3)!}=\frac{4!}{3!\cdot1}=4.

Wypiszmy więc dla porządku ostatnią z nich: \left \{ 1,2,4 \right \}.

 

W praktyce liczenie kombinacji sprowadza się do operowania symbolem Newtona. Można także posłużyć się trójkątem Pascala i odczytać wynik z odpowiedniego wiersza.

 

Zadania:

Ile jest wszystkich kombinacji zbioru \left \{ 1,2,3,4,5,6 \right \}?

 

Odpowiedzi:

63

Polecamy również:

Komentarze (0)
4 + 1 =