Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Funkcja trygonometryczna – definicja, wzory, wykres, zadania

Ostatnio komentowane
Przydało się ^^
Psotkaa • 2016-12-08 13:59:22
kappa xdddddddd
kk • 2016-12-07 19:00:41
Do d**y
Hn 88H • 2016-12-06 20:48:20
Polecam
Ola6a • 2016-12-05 19:19:19
super
sr • 2016-12-05 18:58:48
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Funkcja trygonometryczna – definicja, wzory, wykres, zadania

Podstawowymi funkcjami trygonometrycznymi są funkcje f(x) = \sin x, f(x)=\cos x, f(x) = \operator {tg x} i f(x) = \operator {ctg x}.

 

Dziedziną funkcji sinus i cosinus jest cały zbiór liczb rzeczywistych. Dziedziną funkcji tangens jest zbiór liczb rzeczywistych z wyłączeniem liczb postaci \frac {\pi}2 + k\pi, gdzie k \in \mathb Z, dziedziną funkcji cotangens jest zbiór liczb rzeczywistych z wyłączeniem liczb postaci k\pi, gdzie k \in \mathb Z.

 

Miejsca zerowe funkcji trygonometrycznych mają postać

x = k\pi, gdzie k \in \mathb Z dla funkcji tangens i sinus, oraz

x = \frac {\pi}2 + k\pi, gdzie k \in \mathb Z dla funkcji cotangens i cosinus.

 

Funkcje trygonometryczne są funkcjami okresowymi, okresy funkcji sinus i cosinus wynoszą 2 \pi, natomiast funkcji tangens i cotangens \pi.

 

Wszystkie funkcje trygonometryczne oprócz cosinusa są nieparzyste. Cosinus jest funkcją parzystą.

 

Funkcje trygonometryczne są ciągłe w swoich dziedzinach.

 

Własnością funkcji trygonometrycznych jest nieróżnowartościowość (co wynika z okresowości).

 

Zbiorem wartości (przeciwdziedziną) funkcji sinus i cosinus jest przedział [-1;1], natomiast dla funkcji tangens i cotangens jest to cały zbiór liczb rzeczywistych. Wynika stąd, że funkcje sinus i cosinus są oganiczone (przez -1 od dołu i 1 od góry), natomiast funkcje tangens i cotangens są nieograniczone.

 

Przypomnijmy wykresy funkcji trygonometrycznych:

 

 

Polecamy również:

Komentarze (0)
3 + 5 =