Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Interpretacja fizyczna pochodnej

Ostatnio komentowane
Gupie znj,lsdkhwbdvdmhsńgdme!!ur4te78ri8u.,KHKsdmnKurna kwaczka co to jest do ......... ...
Agent PEPE >>>>> :) • 2016-05-05 06:19:44
Bardzo dokładna i poprawna biografia. Bardzo mi pomogła
Kasiuleńka 001 • 2016-05-04 17:48:01
Piersze prezdynckie wybory 9 Grudnia1922roku.
kamila • 2016-05-04 14:09:53
he
g • 2016-05-03 16:56:08
Antygona jest osamotniona w swoim przekonaniu o słuszności złamania królewskiego zakaz...
konr • 2016-05-03 13:43:48

Język polski

Autor:
Drukuj
Drukuj
Rozmiar
AAA

Interpretacja fizyczna pochodnej

Rachunek różniczkowy jest „językiem” mechaniki i fizyki klasycznej. Newton - jeden z twórców rachunku różniczkowego i całkowego - w przeciwieństwie do nastawionego raczej bardziej filozoficznie Leibniza stworzył go z myślą właśnie o zastosowaniach praktycznych.

Wyobraźmy sobie punkt materialny poruszający się wzdłuż linii prostej, ze zmienną prędkością. Jeśli funkcja s opisuje jego położenie w chwili t to średnia prędkość w przedziale [t_0,t] będzie równa \overline v = \frac {s(t)-s(t_0)}{t-t_0, co jest przecież nie czym innym niż iloraz różnicowy funkcji s.

Na tej podstawie prędkość w chwili t_0 wyrażamy jako granicę ilorazu różnicowego przy t dążącym do t_0, a podstawiając h = t -t_0 mamy

v(t_0) =  \lim_{h \to 0} \frac{s(t_0+h)-s(t_0)}h.

Przy takiej interpretacji prędkość jest równa 0 wówczas gdy s(t_0+h)-s(t_o)=0, a więc gdy przemieszczenie nie następuje.

Prędkość może być również ujemna - dzieje się tak wtedy, gdy punkt cofa się, tzn. porusza w kierunku przeciwnym do kierunku osi.

Ogólnie zatem prędkość jest pochodną drogi względem czasu, tzn. v(t_0)=s'(t_0).

Polecamy również:

4 + 3 =