Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Równanie falowe

Ostatnio komentowane
GEOMETRIA:-)
K • 2017-02-23 20:39:53
Wszystko dobrze opisane
Penisiarz123 • 2017-02-23 18:21:32
Popieram Profesora
Szymon • 2017-02-21 10:32:57
Analiza i interpretacja wierszy Miłosza to męka...
maturzysta • 2017-02-19 17:29:33
Beznadzieja
Jerzy • 2017-02-19 14:52:08
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Równanie falowe

W odróżnieniu do równania opisującego drgania harmoniczne, które jest funkcją jedynie czasu (y = Asinωt), równanie falowe jest funkcją dwóch zmiennych: przestrzennej – x oraz czasowej – t.

Dzieje się tak dlatego, że fala przemieszcza się z określoną prędkością v np. wzdłuż osi x, co powoduje konieczność obliczenia wartości przesunięcia fazowego punktu znajdującego się w ściśle określonej odległości x od miejsca, w którym faza jest znana. Przesunięcie fazowe jest równe czasowi potrzebnemu fali na pokonanie drogi x z prędkością v:

t= \frac{x}{v}

Wstawiając tą zależność do równania opisującego drgania harmoniczne otrzymamy:

y=Asin\left[ \omega \left(t- \frac{x}{v} \right)\right]   - dla prędkości, której kierunek jest zgodny z kierunkiem osi x,


y=Asin\left[ \omega \left(t+ \frac{x}{v} \right)\right]  - dla prędkości o kierunku przeciwnym do kierunku osi x.

Ponieważ   \omega = \frac{2 \pi }{T} oraz v= \frac{\lambda}{T} , to odpowiednie równania fal można zapisać w postaci:

y=Asin\left[2 \pi \left( \frac{t}{T} - \frac{x}{\lambda} \right)\right]

y=Asin\left[2 \pi \left( \frac{t}{T} + \frac{x}{\lambda} \right)\right]

Z powyższych równań wynika, że jeżeli ustalimy wartość położenia (x), to otrzymamy równanie drgania harmonicznego, które jest okresową funkcją czasu.

Z powyższego wykresu wynika, że dla czasów (t), będących całkowitą wielokrotnością okresu (T) wychylenie (y) jest jednakowe.

W przypadku gdy dokładnie ustalimy czas, otrzymamy wówczas przestrzenne zjawisko powtarzające się dokładnie co długość fali (λ).

Dla punktów znajdujących się od siebie w odległościach będących całkowitą wielokrotnością długości fali wychylenie jest jednakowe.

Polecamy również:

Komentarze (0)
1 + 1 =