Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Pole magnetyczne zwojnicy

Ostatnio komentowane
Czy mutacje samych rybosomów 70s lub 80s mogą powodować choroby dziedziczne?
GreenPea • 2016-12-05 10:16:04
aale fajne
nwm • 2016-12-04 13:32:24
nojs
lol • 2016-12-04 11:05:26
ten nademną to pedał XD
mojstaryjestfanatykiemwedkarstwa • 2016-12-03 17:51:08
elo
lolek • 2016-12-03 10:57:03
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Pole magnetyczne zwojnicy

Zwojnica, inaczej solenoid lub cewka, wykonana jest z drutu przewodzącego prąd elektryczny, który jest ciasno nawinięty na korpus w kształcie walca wzdłuż linii śrubowej.
Przepływ prądu elektrycznego przez zwojnicę powoduje pojawienie się pola magnetycznego, które swoim kształtem przypomina pole wytworzone przez magnes sztabkowy.


Na rysunku przedstawiono linie pola magnetycznego, wytworzonego przez solenoid dla dwóch różnych kierunków przepływu prądu elektrycznego. Wypadkowy wektor indukcji pola magnetycznego jest sumą pól wytworzonych przez pojedyncze zwoje solenoidu, co sprawia, że wewnątrz cewki pole magnetyczne jest polem jednorodnym tj. w każdym punkcie ma tą samą wartość, kierunek i zwrot.

Aby znaleźć kierunek indukcji pola magnetycznego, tzn. określić położenie biegunów magnetycznych, należy posłużyć się regułą prawej dłoni.
Pole magnetyczne zwojnicy

Rys. Monika Pilch

Cztery zgięte palce prawej dłoni pokazują kierunek przepływu prądu przez zwojnicę, wówczas kciuk wskazuje kierunek indukcji pola magnetycznego.

Wartość indukcji pola wewnątrz długiej zwojnicy wyraża się wzorem:

B= \mu  _{0}  \mu  \frac{NI}{l}
 
gdzie: μ0 – przenikalność magnetyczna próżni, μ – względna przenikalność magnetyczna rdzenia zwojnicy, N – liczba zwojów, I – natężenie prądu płynącego przez cewkę, l – długość zwojnicy.

Pole magnetyczne zwojnicy – przykład.

Zwojnicę o długości 0,6m i liczbie zwojów równej 400 wypełniono rdzeniem o przenikalności magnetycznej równej 600. Oblicz indukcję pola magnetycznego we wnętrzu tego solenoidu wiedząc, że płynie przez niego prąd o natężeniu 2A.

Dane:                                        Szukane:
l = 0,6m                                      B = ?
N = 400
μ = 600
I = 2A
μ0 = 4π•10-7 N/A2

Rozwiązanie:

B= \mu  _{0}  \mu  \frac{NI}{l}

B=4 \pi  \cdot 10 ^{-7}  \frac{N}{A ^{2} } \cdot 600 \frac{400 \cdot 2A}{0,6m}   \approx 1T

Polecamy również:

Komentarze (0)
5 + 4 =