Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Okres drgań, częstotliwość drgań i częstość kołowa drgań

Ostatnio komentowane
genialne
bobo • 2017-06-20 19:33:18
wóitek to dewil
macica • 2017-06-19 09:15:26
Przepraszam, ale islam nie jest religią a ideologią która podporządkowuje sobie wszyst...
Dyabeł • 2017-06-14 09:57:54
nie wiem o co ci chodzi
To ja • 2017-06-13 20:59:19
Interesujące no ;)
Olcix • 2017-06-13 14:33:24
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Okres drgań, częstotliwość drgań i częstość kołowa drgań

Okres drgań (T) jest to czas trwania jednego pełnego cyklu ruchu, czyli jednego drgania.

Częstotliwość drgań (f) informuje natomiast o liczbie pełnych drgań w czasie jednej sekundy.

Związek pomiędzy okresem a częstotliwością jest więc następujący:

f= \frac{1}{T}

Im dłuższy jest okres drgań, tym mniejsza jest częstotliwość i odwrotnie.

Jednostką częstotliwości jest herc, który jest równy:

[1Hz= \frac{1}{s} ]

Jeżeli ciało wykonuje np. 10 pełnych drgań w czasie jednej sekundy, oznacza to, że porusza się ono z częstotliwością 10Hz.

Częstość kołowa, inaczej pulsacja (ω),  jest wielkością ściśle powiązaną z częstotliwością, następującym równaniem:

 \omega =2 \pi f

Przy opisie drgań harmonicznych jest ona bardzo wygodna, gdyż częstotliwość drgań zwykle występuje z czynnikiem 2π jako argument funkcji sinus lub cosinus.

Częstość kołowa jest wielkością ściśle powiązaną z masą ciała i jego własnościami sprężystymi.

 \omega = \sqrt{ \frac{k}{m} }

gdzie: k – współczynnik sprężystości, m – masa ciała.

Okres, częstotliwość i częstość kołowa drgań – przykład 1.

Na wykresie przedstawiono zależność wychylenia od czasu ciała wykonującego drgania harmoniczne. Określ okres, częstotliwość, częstość kołową i amplitudę drgań. Zapisz równanie opisujące wychylenie w tym ruchu

Polecamy również:

Komentarze (1)
4 + 5 =
Komentarze
sad • 2017-06-07 15:57:26
sad sd sa