Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Moment bezwładności

Ostatnio komentowane
Polecam
Ola6a • 2016-12-05 19:19:19
super
sr • 2016-12-05 18:58:48
Dzięki za pomoc!
Uczeń • 2016-12-05 17:25:49
Moja nauczcielka zagroziła mi że pozwie mnie do sądu jak na wypracowania będe kopiowal...
drtjfghjfcghfcgh • 2016-12-05 15:17:27
@Nesti Głupi to ty jesteś.
xxx • 2016-12-05 17:17:51
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Moment bezwładności

Moment bezwładności jest odpowiednikiem masy dla ruchu obrotowego bryły sztywnej. Jest on wielkością charakteryzującą bezwładność ciała, czyli informuje jak trudno jest wprawić w ruch obrotowy daną bryłę bądź z tego ruchu wytrącić. Moment bezwładności związany jest zawsze z pewną osią obrotu i jest najmniejszy względem osi przechodzącej przez środek masy bryły.


Moment bezwładności dla układu n mas połączonych sztywno ze sobą można zdefiniować następująco:

I= \sum_{i=1}^{n} m _{i} r _{i} ^{2}

gdzie: mi – masa i-tego elementu, ri – odległość i-tego elementu od osi obrotu względem, której liczony jest moment bezwładności.

W przypadku ośrodka ciągłego wyznaczenie momentu bezwładności wymaga rachunku całkowego, stąd momenty bezwładności wybranych brył zostaną podane bez wyprowadzenia w dalszej części opracowania (Tabela momentów bezwładności dla wybranych brył).

Moment bezwładności - przykład 1.

Znajdź moment bezwładności układu przedstawionego na rysunku ( m = 1kg, r = 1m).

 

Rozwiązanie:

I=2m(2r) ^{2}+mr ^{2} =8mr ^{2}+mr ^{2}  =9mr ^{2}  =9kg \cdot m ^{2}

Ile wynosiłby moment bezwładności gdyby oś obrotu znajdowała się w środku masy m?

I=2m(3r) ^{2} +m \cdot 0=18mr ^{2}=18kg \cdot m ^{2}



Polecamy również:

Komentarze (0)
5 + 3 =