Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Energia potencjalna grawitacji dla pola jednorodnego

Ostatnio komentowane
No ch*j tu jest tej charakterystyki elo
wosPRO • 2017-08-20 00:32:13
Witam Dla mnie jednym z największych paradoksów współczesnego świata jest fakt,że p...
pawlo0 • 2017-08-16 17:57:59
WIEM,ŻE MISJE POKOJOWE ŚĄ BARDZO NIEBEZPIECZNE.Podziwiam ludzi,którzy są na misji,ż...
tereska1 • 2017-08-15 08:19:23
Dobre zestawienie. Polecam także ten artykuł http://edueduonline.pl/blog/e-mail-angielsk...
Sara • 2017-08-09 10:30:02
Umiem w matme wiem ile to jest pienc pluz czy
Kujon • 2017-08-08 17:08:22
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Energia potencjalna grawitacji dla pola jednorodnego

Energia potencjalna to energia jaką posiada układ ciał powiązanych wzajemnym oddziaływaniem. Jeżeli tym oddziaływaniem jest oddziaływanie grawitacyjne to mówimy o energii potencjalnej ciężkości (grawitacji).Wartość energii potencjalnej jest funkcją jedynie współrzędnych przestrzennych ciał (a nie np. ich prędkości).
W polu grawitacyjnym jednorodnym przyspieszenie grawitacyjne jest stałe, więc wzór na zmianę energii potencjalnej ciężkości jest następujący:

ΔEp = mgh

gdzie: m – masa ciała, g – przyspieszenie grawitacyjne, h – wysokość na jakiej znajduje się ciało.


Aby jednoznacznie określić wartość energii potencjalnej należy najpierw umówić się, że wartość energii dla dowolnie wybranego rozmieszczenia ciał przyjmuje dowolnie wybraną wartość np. 0, a następnie obliczyć zmianę tej wartości przy  przejściu po dowolnie wybranym torze do innego rozmieszczenia ciał. Na przykład można przyjąć, że dla jabłka leżącego na ziemi wysokość jest równa zero, stąd w tej sytuacji energia potencjalna układu jabłko-ziemia jest równa zero. Gdy jabłko znajdzie się na pewnej wysokość h to jego energia potencjalna zmieni się o ΔEp = mgh.

Rys. Monika Pilch

Praca (W) jaką należy wykonać aby przenieść jabłko z

Polecamy również:

Komentarze (0)
5 + 3 =